
Day 05 - Regression ModelsDay 05 - Regression Models

Sept. 22, 2020Sept. 22, 2020

AdministrativeAdministrative
Tips from other students:

We alternate speaking and sharing our screens as well as working through
our questions/errors together.
Share screens as it is a good way to work collaboratively and I �nd that I
learn better when I see code visually instead of it being verbally explained
to me
Start everything early. Then, you will �nd out which problems you need help
on earlier and will be able to go to of�ce hours. Of�ce hours are really
helpful especially now since they are so accessible.

Of�ce Hours today
DC might be 15 minutes late for 3pm of�ce hours

Reminder about Pre-class:
Due at 11:59pm before class
Credit only awarded if it's on time and completed thoughtfully

Any questions?Any questions?

From Pre-Class AssignmentFrom Pre-Class Assignment

Challenging bitsChallenging bits
How to make the random numbers work as expected
The process for using statsmodels
What do the graphs mean?

You will get more practice with this today.

Things that are also important:Things that are also important:
What is a regression model?
How does a regression model work?
What are the concerns about �tting with a line (or other function)?
How do we determine if the �t is good?

We will work on this all week

Let's start by importing some dataLet's start by importing some data

We will use the famous example from AnscombeWe will use the famous example from Anscombe
In [1]: import pandas as pd

import seaborn as sea
import matplotlib.pyplot as plt
import numpy as np

Read data from Wikipedia's table of data
df = pd.read_html('https://en.wikipedia.org/wiki/Anscombe%27s_quartet',
 match = 'Anscombe\'s quartet',
 skiprows = 1)
df = df[0]
df

Out[1]:
x y x.1 y.1 x.2 y.2 x.3 y.3

0 10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

1 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

2 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

3 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

4 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

5 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

7 4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

8 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

9 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

10 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Let's just look at the dataLet's just look at the data
In [2]: def plot_anscombe(x, y):

 plt.plot(x, y, 'o', markersize = 10)
 plt.ylabel('y')
 plt.xlabel('x')
 plt.axis([2,20,2,14])

plt.subplot(221)
plot_anscombe(df['x'], df['y'])
plt.subplot(222)
plot_anscombe(df['x.1'], df['y.1'])
plt.subplot(223)
plot_anscombe(df['x.2'], df['y.2'])
plt.subplot(224)
plot_anscombe(df['x.3'], df['y.3'])

Ok let's run an OLS model of this data and see what we getOk let's run an OLS model of this data and see what we get
In [3]: import statsmodels.api as sm

x = pd.DataFrame(df['x']) ## Make the independent variable
x_w_c = sm.add_constant(x) ## Add a constant for the model (otherwise intercep
t is zero)
model = sm.OLS(df['y'], x_w_c) ## Make the OLS model for the dependent variable
results = model.fit() ## Fit the model
print(results.params) ## For this model, print the intercept and slope

const 3.000091
x 0.500091
dtype: float64

Ok let's run this for all the data and see what we getOk let's run this for all the data and see what we get

We can make a function to do so for us and return the results objectWe can make a function to do so for us and return the results object
In [4]: def return_fit_parameters(x, y):

 x = pd.DataFrame(x)
 x_w_c = sm.add_constant(x)
 model = sm.OLS(y, x_w_c)
 results = model.fit()
 return results

Now we can run it for each data setNow we can run it for each data set

Anscombe's Data set are Anscombe's Data set are (by design) �t by the same model(by design) �t by the same model
Slope: 3.0
Intercept 0.5

We can use We can use to measure the goodness of �t to measure the goodness of �t𝑅
2

In [6]: print('RSqr for Set 1:', set1.rsquared.round(3), '\n')
print('RSqr for Set 2:', set2.rsquared.round(3), '\n')
print('RSqr for Set 3:', set3.rsquared.round(3), '\n')
print('RSqr for Set 4:', set4.rsquared.round(3), '\n')

Ok, well they all �t pretty well. What is going on?Ok, well they all �t pretty well. What is going on?

RSqr for Set 1: 0.667

RSqr for Set 2: 0.666

RSqr for Set 3: 0.666

RSqr for Set 4: 0.667

Let's look at the �tted values and the real data in a scatter plotLet's look at the �tted values and the real data in a scatter plot
In [7]: def compare_data_and_fit(x, y, fit_y):

 plt.plot(x, y, 'o')
 plt.plot(x, fit_y, 'x')
 plt.ylabel('y')
 plt.xlabel('x')
 plt.axis([2,20,2,14])
 plt.legend(['Data', 'Fitted Values'])

In [8]: plt.subplot(221)
compare_data_and_fit(df['x'], df['y'], set1.fittedvalues)
plt.subplot(222)
compare_data_and_fit(df['x.1'], df['y.1'], set2.fittedvalues)
plt.subplot(223)
compare_data_and_fit(df['x.2'], df['y.2'], set3.fittedvalues)
plt.subplot(224)
compare_data_and_fit(df['x.3'], df['y.3'], set4.fittedvalues)

Ok, now we see the problem. The �t is not good for the anythingOk, now we see the problem. The �t is not good for the anything
but the �rst set.but the �rst set.

Let's look Let's look at comparing the �tted values to the real dataat comparing the �tted values to the real data

If it was perfect we would expect a lineIf it was perfect we would expect a line
In [10]: def compare_data_and_fittedvalues(y, fit_y):

 plt.plot(y, fit_y, 'x')
 plt.plot([0,20],[0,20], 'r-', lw = 2)
 plt.ylabel('Fitted Values')
 plt.xlabel('Data')
 plt.axis([2,14,2,14])

In [11]: plt.subplot(221)
compare_data_and_fittedvalues(df['y'], set1.fittedvalues)
plt.subplot(222)
compare_data_and_fittedvalues(df['y.1'], set2.fittedvalues)
plt.subplot(223)
compare_data_and_fittedvalues(df['y.2'], set3.fittedvalues)
plt.subplot(224)
compare_data_and_fittedvalues(df['y.3'], set4.fittedvalues)

Ok, now we see why our �ts are not so good.Ok, now we see why our �ts are not so good.

Only the �rst set seems to be close to the 1:1 lineOnly the �rst set seems to be close to the 1:1 line

Let's look at the residuals (the errors in the �ts)Let's look at the residuals (the errors in the �ts)

If our �t is good, they should look randomly distributedIf our �t is good, they should look randomly distributed
In [12]: def plot_residuals(x, resid):

 plt.plot(x, resid, 'o')
 plt.axhline(0, c = 'r', lw = 2)
 plt.xlabel('data')
 plt.ylabel('residuals')
 plt.axis([0,20,-2,2])

In [13]: plt.subplot(221)
plot_residuals(df['x'], set1.resid)
plt.subplot(222)
plot_residuals(df['x.1'], set2.resid)
plt.subplot(223)
plot_residuals(df['x.2'], set3.resid)
plt.subplot(224)
plot_residuals(df['x.3'], set4.resid)

Again only the �rst seems to be ok as the residuals areAgain only the �rst seems to be ok as the residuals are
randomly distributed.randomly distributed.

Questions, Comments, Concerns?Questions, Comments, Concerns?

